
Algorithmic Analysis
Charl du Plessis and Robert

Ketteringham

Basic Terminology
• Time Efficiency – this indicates the speed

of an algorithm

• Space Efficiency – this indicates the

amount of extra space an algorithm

requires

• Mostly interested in Time Efficiency

• We will use some notation (O) Big-O for

this

Starting Analysis
• Measure the input size.

• Describe its efficiency as a function on

some parameter, say N.

• Usually, we let the number of data

elements in the input be N.

• Note that some algorithms will require

more than one function such as the

number of vertices (V) and edges (E).

Starting Analysis
• Now let us put the time = F(N).

• Observe that we are not very interest in

the running time for a program for small

inputs.

• We will use what is called Big-Oh (O) as

a way to compare the growth rates of

functions

Big-Oh (O)
• Constant values are usually ignored.

• We also ignore smaller cases of input.

• Growth rate of algorithm:

• Linear

• Quadratic

• Cubic

• Logarithmic

• Since we ignore constant values, function

takes upon most dominant term.

Big-Oh (O)

Is an upper-bound of the growth rate of the

algorithm.

T(N) = O(F(N)) if there are positive

constants M and c such that:

T(N) <= c.F(N) when N >= M

Other Terminology

Big-Omega: gives lower bound on the growth of

T(N).

T(N) = Ω(F(N)) if there are positive constants c

and M such that

T(N) >= c.F(N) when N >= M

Other Terminology

Big-theta: growth rate of T(N) is equal to
F(N)

T(N) = Θ(F(N))

iff T(N) = O(F(N))

and T(N) = Ω(F(N))

Other Terminology

Little-Oh: growth rate of T(N) is less than

F(N)

T(N) = o(F(N)) if there are postive

constants M and c such that:

T(N) < c.F(N) when N >= M

Big-Oh Rules

Rule 1: If T(N) is a polynomial of degree k,

then:

T(N) = Θ (N^k)

Rule 2: If T_1(N) = O(F(N)) and T_2(N) =

O(G(N)) then:

T_1(N) + T_2(N) = max{O(F(N)),O(G(N))}

T_1(N)*T_2(N) = O(F(N)*G(N))

Rule 3:

(Log N)^k = O(N)

Big-Oh Disadvantages

• It gives the worst case run bound – and this

might not happen often

• Sometimes it is better to use average case

run bound, but is often difficult to calculate

• Not useful for small input – since only

indicates how fast the algorithm grows

• Two different algorithms can have the same

Big-Oh, but can run differently

Analysis – Sequential Search

• Given an array N elements and key, we search
every given element for the key.

• Worst case: N

• Best case: 1

• Average case: Let p be the probability that the key is
in the array.

Then the probability that the key will be in the ith
position is p/N.

We will look at the average number of comparisons
the program must make.

Analysis – Sequential Search

Avg = (1*p/N + 2*p/N + … + N*p/N) + N*(1-p)

= p/N * (1+2+…+N) + N*(1-p)

= p/N * N(N+1)/2 + N(1-p)

= p(N+1)/2 + N(1-p)

If p = 1 (the key will definitely be in the list),

then the average number of comparisons is:

(N+1)/2

Analysis of Iterative Algorithms
• Choose parameter(s) to indicate the input’s size

• Determine the algorithm’s basic operation (operation

in its most inner loop)

• Check if the number of times the basic operation

depends only on the input size. If it depends on some

other factors observe worst-case, best-case, avg-

case seperately.

• Use the rules of Big-Oh and analyze the order of

growth.

Analysis of Recursive Algorithms
• Choose parameter(s) to indicate the input’s size

• Determine the algorithm’s basic operation (operation

in its most inner loop)

• Check if the number of times the basic operation

depends only on the input size. If it depends on some

other factors observe worst-case, best-case, avg-

case seperately.

•Set up a recurrence relation for the number of times

the that the basic operation is executed.

• Solve the recurrence or determine the order of

growth of its solution.

