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Basic Terminology
• Time Efficiency – this indicates the speed    

of an algorithm

• Space Efficiency – this indicates the 

amount of extra space an algorithm 

requires

• Mostly interested in Time Efficiency

• We will use some notation (O) Big-O for 

this



Starting Analysis
• Measure the input size.

• Describe its efficiency as a function on 

some parameter, say N.

• Usually, we let the number of data 

elements in the input be N.

• Note that some algorithms will require 

more than one function such as the 

number of vertices (V) and edges (E).



Starting Analysis
• Now let us put the time = F(N).

• Observe that we are not very interest in 

the running time for a program for small 

inputs.

• We will use what is called Big-Oh (O) as 

a way to compare the growth rates of 

functions



Big-Oh (O)
• Constant values are usually ignored.

• We also ignore smaller cases of input.

• Growth rate of algorithm:

• Linear

• Quadratic

• Cubic

• Logarithmic

• Since we ignore constant values, function 

takes upon most dominant term.



Big-Oh (O)

Is an upper-bound of the growth rate of the 

algorithm.

T(N) = O(F(N)) if there are positive 

constants M and c such that:

T(N) <= c.F(N) when N >= M



Other Terminology

Big-Omega: gives lower bound on the growth of 

T(N).

T(N) = Ω(F(N)) if there are positive constants c 

and M such that 

T(N) >= c.F(N) when N >= M



Other Terminology

Big-theta: growth rate of T(N) is equal to 
F(N)

T(N) = Θ(F(N)) 

iff  T(N) = O(F(N)) 

and T(N) = Ω(F(N))



Other Terminology

Little-Oh: growth rate of T(N) is less than 

F(N)

T(N) = o(F(N)) if there are postive 

constants M and c such that:

T(N) < c.F(N) when N >= M



Big-Oh Rules

Rule 1: If T(N) is a polynomial of degree k, 

then:

T(N) = Θ (N^k)

Rule 2: If T_1(N) = O(F(N)) and T_2(N) = 

O(G(N)) then:

T_1(N) + T_2(N) = max{O(F(N)),O(G(N))}

T_1(N)*T_2(N) = O(F(N)*G(N))

Rule 3:

(Log N)^k = O(N)



Big-Oh Disadvantages

• It gives the worst case run bound – and this 

might not happen often

• Sometimes it is better to use average case 

run bound, but is often difficult to calculate

• Not useful for small input – since only 

indicates how fast the algorithm grows

• Two different algorithms can have the same 

Big-Oh, but can run differently



Analysis – Sequential Search

• Given an array N elements and key, we search 
every given element for the key.

• Worst case: N

• Best case: 1

• Average case: Let p be the probability that the key is 
in the array.

Then the probability that the key will be in the ith 
position is p/N.

We will look at the average number of comparisons 
the program must make.



Analysis – Sequential Search

Avg = (1*p/N + 2*p/N + … + N*p/N) + N*(1-p)

= p/N * (1+2+…+N)  + N*(1-p)

= p/N * N(N+1)/2 + N(1-p)

= p(N+1)/2 + N(1-p)

If p = 1 (the key will definitely be in the list), 

then the average number of comparisons is:

(N+1)/2



Analysis of Iterative Algorithms
• Choose parameter(s) to indicate the input’s size

• Determine the algorithm’s basic operation (operation 

in its most inner loop)

• Check if the number of times the basic operation 

depends only on the input size. If it depends on some 

other factors observe worst-case, best-case, avg-

case seperately.

• Use the rules of Big-Oh and analyze the order of 

growth.



Analysis of Recursive Algorithms
• Choose parameter(s) to indicate the input’s size

• Determine the algorithm’s basic operation (operation 

in its most inner loop)

• Check if the number of times the basic operation 

depends only on the input size. If it depends on some 

other factors observe worst-case, best-case, avg-

case seperately.

•Set up a recurrence relation for the number of times 

the that the basic operation is executed.

• Solve the recurrence or determine the order of 

growth of its solution.


